ON (n, m)-NORMAL POWERS WEIGHTED COMPOSITION OPERATORS ON HARDY SPACE \mathbb{H}^2 .

Eiman H. Abood

Department of Mathematics, College of science, University of Baghdad, Baghdad, Iraq.

ABSTRACT: An operator $T \in B(H)$ is called (n,m)-normal powers operator if $T^n(T^m)^* = (T^m)^*T^n$ for some nonnegative integers n and m. In this paper we characterized (n,m)-normal powers weighted composition on Hardy space \mathbb{H}^2 .

Keywords: Composition operators, weighted composition operators, (n, m)-normal powers operators

.1. INTRODUCTION.

Let \mathbb{U} denote the open unite disc in the complex plan, \mathbb{H}^{∞} denotes the collection of all bounded holomorphic functions on \mathbb{U} and let \mathbb{H}^2 is consisting of all holomorphic functions on \mathbb{U} such that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ whose Maclaurin coefficients are square summable (i.e) f(z) = $\sum_{n=0}^{\infty} |a_n|^2 < \infty$. More precisely $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{H}^2$ if and only if $||f|| = \sum_{n=0}^{\infty} |a_n|^2 < \infty$. The inner product inducing the \mathbb{H}^2 norm is given by $\langle f,g \rangle =$ $\sum_{n=0}^{\infty} a_n \overline{b_n}$

where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$.

Given any holomorphic self-map φ of \mathbb{U} , recall that [9] the composition operator is defined as follows $C_{\varphi}(h) = ho\varphi$ $(h \in \mathbb{H}^2)$. It is called the composition operator with symbol φ , is necessarily bounded. Moreover, let $f \in \mathbb{H}^{\infty}$, the operator T_f defined by $T_f(h(z)) = f(z)h(z)$, $(z \in \mathbb{U}, h \in \mathbb{H}^2)$

is called the Toeplitz operator on \mathbb{H}^2 with symbol f. Since $f \in \mathbb{H}^\infty$, then T_f is called a holomorphic Toeplitz operator. If T_f is a holomorphic Toeplitz operator, then the operator $T_f C_{\varphi}$ is bounded and has the form

$$T_f \mathcal{C}_{\varphi} g = f(g \circ \varphi) \qquad (g \in \mathbb{H}^2)$$

It is called the weighted composition operator with symbols f and φ [7]. The weighted composition operator is denoted by

$$\mathcal{W}_{f,\varphi} g = f(g \circ \varphi) \qquad (g \in \mathbb{H}^2).$$

For given holomorphic self-maps f and φ of \mathbb{U} , $\mathcal{W}_{f,\varphi}$ is bounded operator even if $f \notin \mathbb{H}^{\infty}$. To see a trivial example, consider $\varphi(z) = p$ where $p \in \mathbb{U}$ and $f \in \mathbb{H}^2$, then for all $g \in \mathbb{H}^2$, we have

$$\left\| \mathcal{W}_{f,\varphi} g \right\| = \|g(p)\| \|f\| = \|f\| |\langle g, K_p \rangle| \le \|f\| \|g\| \|K_p\| .$$

In fact, if $f \in \mathbb{H}^{\infty}$, then $\mathcal{W}_{f,\varphi}$ is bounded operator on \mathbb{H}^2 with norm

$$\| \mathcal{W}_{f,\varphi} \| = \| T_f C_{\varphi} \| \le \| f \|_{\infty} \| C_{\varphi} \| = \| f \|_{\infty} \sqrt{\frac{1 + |\varphi(0)|}{1 - |\varphi(0)|}}.$$

We collect some properties of Toeplitz and composition operators in the following known results.

Lemma (1.1): Let φ be a holomorphic self-map of \mathbb{U} , then (a) $C_{\varphi}T_f = T_{fo\varphi} C_{\varphi}$.

(b) $T_g T_f = T_{gf}$.

(c) $T_{f+\gamma g} = T_f + \gamma T_g.$

(d)
$$T_f^* = T_{\bar{f}}$$
.

Proposition (1.2):[1] Let φ and ψ be two holomorphic selfmap of \mathbb{U} , then

1. $C_{\varphi}^{n} = C_{\varphi_{n}}$ for all positive integer n, where $\varphi_{n} = \underbrace{\varphi \circ \varphi \circ \cdots \circ \varphi}_{n-times}$.

2. C_{φ} is the identity operator if and only if φ is the identity map.

3. $C_{\varphi} = C_{\psi}$ if and only if $\varphi = \psi$.

4. The composition operator cannot be zero operator.

For each $\alpha \in \mathbb{U}$, the reproducing kernel at α , defined by $K_{\alpha}(z) = \frac{1}{1 - \overline{\alpha}z}$.

It is easily seen that the family $\{K_{\alpha}\}_{\alpha \in \mathbb{U}}$ forms a dense subset of \mathbb{H}^2 . In [4], the adjoint of weighted composition operator on the reproducing kernel at α is as follows

 $\mathcal{W}_{f,\varphi}^* K_{\alpha} = f(\alpha) K_{\varphi(\alpha)}.$

If $\varphi(z) = (az + b)/cz + d)$ is linear-fractional self-map of U, Cowen in [5] establishes $C_{\varphi}^* = T_g C_{\sigma} T_h^*$, where the Cowen auxiliary functions g, σ and h are defined as follows: $g(z) = 1/(-\bar{b}z + \bar{d}), \ \sigma(z) = (\bar{a}z - \bar{c})/(-\bar{b}z + \bar{b}z)$

$$\overline{d}$$
) and $h(z) = cz + d$

Therefore $W_{f,\varphi}^* = (T_f C_{\varphi})^* = C_{\varphi}^* T_f^* = T_g C_{\sigma} T_h^* T_f^*.$

Recall that an operator $T \in B(H)$ is called normal if $||Tx|| = ||T^*x||$ for all $x \in H$. In [2] the author introduced the (n, m)-normal powers operators as follows: an operator $T \in B(H)$ is called (n, m)-normal powers operator if $T^n(T^m)^* = (T^m)^*T^n$ for some nonnegative integers n and m. Moreover, T is called (n, m)-unitary powers operator if and only if $T^n(T^m)^* = (T^m)^*T^n = I$ for some nonnegative integers n and m. In the following theorem the author gives a necessary condition for T to be (n, m)-normal powers operators.

Proposition (1.3): Let $T \in B(H)$. If T is (n, m)-normal powers operator, then T^{nm} is normal operator.

In [4] Bourdon and Narayan characterized normal weighted composition operator on \mathbb{H}^2 . In this paper, we give a characterization of (n,m)-normal powers weighted composition operator on \mathbb{H}^2 when φ has interior fixed point of \mathbb{U} .

2. (n, m)-normal powers weighted composition operator on \mathbb{H}^2 .

First, Cowen [6] described the normal composition operator as follows.

Theorem (2.1): Let φ be a holomorphic self-map of \mathbb{U} . Then C_{φ} is normal if and only if $\varphi(z) = \lambda z$ for some $|\lambda| \le 1$.

The following consequence describes the (n,m)-normal powers composition operator on \mathbb{H}^2 .

Theorem (2.2): Let φ be a holomorphic self-map of \mathbb{U} . Then C_{φ} is (n, m)-normal powers if and only if $\varphi(z) = \lambda z$ for some $|\lambda| \le 1$.

Proof: If C_{φ} is (n, m)-normal powers, then by proposition(1.3) $C_{\varphi}^{nm} = C_{\varphi_{nm}}$ is normal operator. Thus by theorem(2.1) we have $\varphi_{nm}(z) = \lambda z$ for some $|\lambda| \le 1$. Hence it is easily seen that $\varphi(z) = \lambda z$ for some $|\lambda| \le 1$.

The converse is straightforward by the fact that every normal operator is (n, m)-normal powers

Corollary(2.3): Let φ be a holomorphic self-map of \mathbb{U} . Then C_{ϕ} is (n,m)-normal powers if and only if C_{ϕ} is normal.

Corollary(2.4): Let φ be a holomorphic self-map of \mathbb{U} . Then C_{ω} is (n, m)-unitary powers if and only if $\varphi(z) = \lambda z$ for some $|\lambda| \le 1$ such that $\overline{\lambda^m} \lambda^n = 1$ for some nonnegative integers n and m.

Proof: If C_{ϕ} is (n,m)-unitary powers, then it is (n,m)normal powers. Thus by corollary(2.3) and theorem(2.1) $\varphi(z) = \lambda z$ for some $|\lambda| \le 1$. Moreover, for each $\alpha \in \mathbb{U}$ we have

 $C_{\varphi}^{n} (C_{\varphi}^{m})^{*} K_{\alpha}(z) = C_{\varphi_{n}} (C_{\varphi_{m}})^{*} K_{\alpha}(z) = (C_{\varphi_{m}})^{*} C_{\varphi_{n}} K_{\alpha}(z) =$ $K_{\alpha}(z)$. Hence for each $\alpha \in \mathbb{U}$ we have

$$C_{\varphi}^{n} (C_{\varphi}^{m})^{*} K_{\alpha}(z) = C_{\varphi_{n}} (C_{\varphi_{m}})^{*} K_{\alpha}(z)$$
$$= C_{\varphi_{n}} K_{\varphi_{m}(\alpha)}(z) = K_{\varphi_{m}(\alpha)}(\varphi_{n}(z))$$
$$= K_{\alpha}(z).$$

It follows that for each $\alpha \in \mathbb{U}$,

 $\frac{1}{1-\overline{\varphi_m(\alpha)}\varphi_n(z)} = \frac{1}{1-\overline{\alpha}z}$. Then,

 $\frac{1}{1 - \overline{\lambda}^m \lambda^n \overline{\alpha} z} = \frac{1}{1 - \overline{\alpha} z}.$ Thus $\overline{\lambda}^m \lambda^n = 1$. The converse is clear

Proposition (2.5): Let φ be a non-constant holomorphic self-map of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If $\mathcal{W}_{f,\varphi}$ is (n,m)-normal *powers* operator, then either f = 0 or f never vanishes on U.

Proof: Assume that $\mathcal{W}_{f,\varphi}$ is (n,m)-normal powers operator such that $f(\beta) = 0$ for some $\beta \in \mathbb{U}$. Thus $\mathcal{W}_{f,\varphi}^* K_{\beta} =$ $\overline{f(\beta)}K_{\varphi(\beta)} = 0$. But by proposition(1.3) $\mathcal{W}_{f,\varphi}^{nm}$ is normal. Hence

 $\left\|\mathcal{W}_{f,\varphi}^{nm}K_{\beta}\right\| = \left\|\left(\mathcal{W}_{f,\varphi}^{nm}\right)^{*}K_{\beta}\right\| = \left\|\left(\overline{f(\beta)}\right)^{nm}K_{\varphi(\beta)}\right\| = 0.$

Therefore for each $\beta \in \mathbb{U}$ $\mathcal{W}_{f,\varphi}^{nm} K_{\beta} = 0$. This implies that $\mathcal{W}_{f,\varphi}^{nm} = 0$. Hence by [8] we have

 $\mathcal{W}_{f,\varphi}^{nm} = T_{f(f\circ\varphi)(f\circ\varphi_2)\dots(f\circ\varphi_{nm-1})}C_{\varphi_{nm}} = 0.$ But by proposition(1.2) (4) we have $T_{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{nm-1})} = 0$. It follows that $f(\varphi_i(\mathbb{U})) = 0$ for some $1 \le i \le nm - 1$. But φ is non-constant, then by open mapping theorem f = 0 on \mathbb{U} . **Proposition** (2.6): Let φ be a non-constant holomorphic self-map of U, $f \in \mathbb{H}^{\infty}/\{0\}$. If $\mathcal{W}_{f,\omega}$ is (n,m)-normal *powers* operator, then φ is univalent

Proof: If φ is not univalent on \mathbb{U} , then there exists $a, b \in \mathbb{U}$ such that $a \neq b, \varphi(a) = \varphi(b)$. Since $f \neq 0$, then by proposition(2.5) we get that $f(a) \neq 0, f(b) \neq 0$. Put g = $\frac{K_a}{\overline{f(a)}} - \frac{K_b}{\overline{f(b)}}$. Since $a \neq b$, then $g \neq 0$. Therefore, it is easily $\mathcal{W}_{f,\varphi}^*g = K_{\varphi(a)} - K_{\varphi(b)} = 0.$ But seen that by proposition(1.3) $\mathcal{W}_{f,\varphi}^{nm}$ is normal, then $\|\mathcal{W}_{f,\varphi}^{nm}g\| =$ $\| (\mathcal{W}_{f,\varphi}^{nm})^* g \| = 0$. This implies that $\mathcal{W}_{f,\varphi}^{nm} g = 0$. Therefore $\mathcal{W}_{f,\varphi}^{nm}g = T_{f(f\circ\varphi)(fo\varphi_2)\dots(fo\varphi_{nm-1})}\mathcal{C}_{\varphi_{nm}}g = 0.$ It implies that $(f \circ \varphi(z))(f \circ \varphi_2(z))...(f \circ \varphi_{nm-1}(z))g(\varphi_{nm}(z)) = 0.$ Since $f \neq 0$, then by proposition(2.5) $f(\varphi_i(\mathbb{U})) \neq 0$ for each $1 \le i \le nm - 1$. It follows that $g(\varphi_{nm}(\mathbb{U})) = 0$. But φ is non-constant, then by open mapping theorem g = 0 on U, which a contradiction. Therefore, φ is univalent

Now we are ready to discuss the sufficient condition for (n, m)-normal powers operator when φ has an interior fixed point of U.

Proposition (2.7): Let φ be a holomorphic self-map of \mathbb{U} , $f \in \mathbb{H}^{\infty}$ such that $\varphi(p) = p$ for some $p \in \mathbb{U}$. If $\mathcal{W}_{f,\varphi}$ is (n, m)-normal powers operator, then

$$f(f \circ \varphi)(f \circ \varphi_2) \dots (f \circ \varphi_{nm-1}) = \frac{(f(p))^{nm} K_p}{K_p \circ \varphi_{nm}}$$

Proof: Since $\mathcal{W}_{f,\varphi}$ is (n,m)-normal powers, then by proposition(1.3) $\mathcal{W}_{f,\varphi}^{nm}$ is normal. But $(\mathcal{W}_{f,\varphi}^{nm})^* K_p = (\mathcal{W}_{f,\varphi}^*)^{nm} K_p = (\overline{f(p)})^{nm} K_p$. Hence K_p is an eigenvector for $\left(\mathcal{W}_{f,\varphi}^{nm}\right)^*$ corresponding to eigenvalue $\left(\overline{f(p)}\right)^{nm}$. But $\mathcal{W}_{f,\varphi}^{nm}$ is normal, then K_p is an eigenvector for $\mathcal{W}_{f,\varphi}^{nm}$ corresponding to eigenvalue $f(p)^{nm}$ (see [3]). Therefore $\mathcal{W}_{f,\varphi}^{nm}K_p = f(p)^{nm}K_p$. Thus

 $T_{f(f\circ\varphi)(fo\varphi_2)\dots(fo\varphi_{nm-1})}C_{\varphi_{nm}}K_p = f(p)^{nm}K_p$. It follows that $f(f \circ \varphi)(f \circ \varphi_2)...(f \circ \varphi_{nm-1})(K_p \circ \varphi_{nm}) = f(p)^{nm}K_p.$ This implies that

$$f(f \circ \varphi)(f \circ \varphi_2) \dots (f \circ \varphi_{nm-1}) = \frac{(f(p))^{nm} K_p}{K_p \circ \varphi_{nm}} \quad \blacksquare$$

Now, since $K_0 \equiv 1$, then by Proposition(2.7) we get an immediate result.

Corollary (2.8): Let φ be a holomorphic self-map of \mathbb{U} , $f \in \mathbb{H}^{\infty}$ such that $\varphi(0) = 0$. If $\mathcal{W}_{f,\varphi}$ is (n,m)-normal powers operator, then $f(f \circ \varphi)(f \circ \varphi_2)...(f \circ \varphi_{nm-1})$ is constant and $C_{\varphi_{nm}}$ is (n, m)-normal powers.

From corollary(2.8) and theorem(2.2) we conclude the following consequence.

Corollary (2.9): Let φ be a holomorphic self-map of \mathbb{U} with $\varphi(0) = 0$ and $f \in \mathbb{H}^{\infty}$ such that |f(z)| = 1 on \mathbb{U} . Then $\mathcal{W}_{f,\varphi}$ is (n,m)-normal powers operator if and only if $f(f \circ \varphi)(f \circ \varphi_2)...(f \circ \varphi_{nm-1})$ is constant and $\varphi(z) = \lambda z$ for some $|\lambda| \leq 1$.

Proposition(2.10): Let φ be a linear fractional self-map of \mathbb{U} and $f(f \circ \varphi)(f \circ \varphi_2) \dots (f \circ \varphi_{i-1}) = K_{\sigma_{i(0)}}(z), i = n, m.$ Then $\mathcal{W}_{f,\varphi}$ is (n,m)-normal powers operator if and only if

$$\frac{\frac{d_m d_n}{(\overline{d_m} d_n - \overline{c_m} c_n) - (\overline{b_m} d_n - \overline{a_m} c_n) z} C_{\varphi_n \circ \sigma_m} = \frac{1}{\overline{d_m} d_n} \frac{1}{(\overline{d_m} d_n - \overline{b_m} b_n) - (\overline{b_m} a_n - \overline{d_m} c_n) z} C_{\sigma_m \circ \varphi_n}$$

where σ_i is the Cowen auxiliary function of φ_i .

Proof: Recall that if φ is a linear fractional self-map of U, then $C_{\varphi}^* = T_g C_{\sigma} T_h^*$, where the Cowen auxiliary functions g, σ and h are defined as follows:

$$g(z) = 1/(-\bar{b}z + \bar{d}), \ \sigma(z) = (\bar{a}z - \bar{c})/(-\bar{b}z + \bar{d})$$

and $h(z) = cz + d$.

Since φ is a linear fractional self-map of U, then it is clear that C_{φ_i} is also a linear fractional self-map of U. Therefore, $C_{\varphi_i}^* = T_{g_i} C_{\sigma_i} T_{h_i}^*$, where the Cowen auxiliary functions g_i , σ_i and h_i are defined as follows:

 $h_i(z) = c_i z + d_i.$

$$g_i(z) = \frac{1}{-\overline{b}_i z + \overline{d}_i},$$

$$\sigma_i(z) = \frac{\overline{a}_i z - \overline{c}_i}{-\overline{b}_i z + \overline{d}_i},$$

and

Note that, $K_{\sigma_{i(0)}}(z) = \frac{d_i}{c_i z + d_i}$, then $K_{\sigma_{i(0)}}(z)h_i = d_i$, $i = \frac{d_i}{d_i}$ *n*, *m*. Thus for each $v \in \mathbb{H}^2$ we get

March-April

$\left(W_{f,\varphi}^{m}\right)^{*}W_{f,\varphi}^{n}v$

$$= \left(T_{f(f\circ\varphi)(fo\varphi_2)\dots(fo\varphi_{m-1})}C_{\varphi_m}\right)^* T_{f(f\circ\varphi)(fo\varphi_2)\dots(fo\varphi_{n-1})}C_{\varphi_n}v$$

= $C_{\varphi_m}^* T_{\overline{f(f\circ\varphi)(fo\varphi_2)\dots(fo\varphi_{m-1})}}T_{f(f\circ\varphi)(fo\varphi_2)\dots(fo\varphi_{n-1})}C_{\varphi_n}v$

$$= T_{g_m} C_{\sigma_m} T_{h_m}^* T_{\overline{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{m-1})}} T_{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{n-1})} C_{\varphi_n} v$$

$$= T_{g_m} C_{\sigma_m} T_{\overline{h_m K_{\sigma_m(0)}}} T_{K_{\sigma_n(0)}} C_{\varphi_n} v$$

$$= \overline{d_m} T_{g_m} C_{\sigma_m} T_{K_{\sigma_{n(0)}}} C_{\varphi_n} v$$

- $= \overline{d_m} T_{g_m} T_{K_{\sigma_{n(0)}} \circ \sigma_m} C_{\sigma_m} C_{\varphi_n} v$
- $= \overline{d_m} T_{g_m(K_{\sigma_{n(0)}} \circ \sigma_m)} C_{\varphi_n \circ \sigma_m} v$
- $= \overline{d_m} \cdot g_m \cdot K_{\sigma_{n(0)}} \circ \sigma_m \cdot v \circ \varphi_n \circ \sigma_m.$

$$W_{f,\varphi}^n(W_{f,\varphi}^m)$$
 v

 $= T_{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{n-1})} C_{\varphi_n} (T_{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{m-1})} C_{\varphi_m})^* v$ $T_{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{n-1})} C_{\varphi_n} C_{\varphi_m}^* T_{\overline{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{m-1})}} v$

- $= T_{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{n-1})} C_{\varphi_n} T_{g_m} C_{\sigma_m} T_{h_m}^* T_{\overline{f(f \circ \varphi)(f \circ \varphi_2)\dots(f \circ \varphi_{m-1})}} v$
- $= T_{K_{\sigma_{n}(0)}} C_{\varphi_{n}} T_{g_{m}} C_{\sigma_{m}} T_{\overline{h_{m}K_{\sigma_{m}(0)}}}$
- $= \overline{d_m} T_{K_{\sigma_n(0)}} T_{g_m \circ \varphi_n} C_{\varphi_n} C_{\sigma_m} v$
- $= \overline{d_m} T_{K_{\sigma_n(0)}(g_m \circ \varphi_n)} C_{\sigma_m \circ \varphi_n} v$
- $= \overline{d_m} \cdot K_{\sigma_{n(0)}} \cdot g_m \circ \varphi_n \cdot v \circ \sigma_m \circ \varphi_n.$
- as desired.

REFERENCES:

- [1] Abood E. H., The composition operator on Hardy space H^2 , Ph.D. Thesis, University of Baghdad, 2003.
- [2] Abood E. H. and Al-loz, M. A., On some generalizations of normal operators on Hilbert space, Iraqi J. of Science, 56(2015), No. 2C, 1786-1794.
- [3] Berberian, S. K., Introduction to Hilbert space, Sec. Ed., Chelesa Publishing Com., New York, N. Y., 1976.
- [4] Bourdon Paul S. and Narayan S., Normal weighted composition operators on the Hardy space, J. Math. Anal. Appl.,367(2010),5771-5801.
- [5] Cowen, C. C., Linear fractional composition operator on H², Integral Equations and Operator Theory, 11(1988), 151-160.
- [6] Cowen, C. C., Subnormality and composition operator on H^2 , J. of Func. Ana., 18(1988), 298-313.
- [7] Gunatillake, G., Weighted composition operators, Ph.D. Thesis, University of Baghdad, 2005.
- [8] Gunatillake, G., Invertible weighted composition operator, J. of Func. Ana., 261(2011), 831-860.
- [9] Nordgren, E. A., Composition operator, Can. J. Math., 20(1968), 442-449.