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ABSTRACT:  An operator    ( ) is called (   )-normal powers operator if     (  )  (  )    for some 

nonnegative integers   and  . In this paper we characterized (   )-normal powers weighted composition on Hardy 

space     
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.1. INTRODUCTION. 
     Let    denote the open unite disc in the complex plan, 

   denotes the collection of all bounded holomorphic 

functions on   and let     is consisting of all holomorphic 

functions on   such that       ( )  ∑    
  

      whose 

Maclaurin coefficients are square summable (i.e)      ( )  
∑ |  |

  
     . More precisely  ( )  ∑    

  
          

if and only if  ‖ ‖  ∑ |  |
  

     .The inner product 

inducing the      norm is given by            ⟨   ⟩  
∑   
 
     ̅̅ ̅  

where  ( )  ∑    
  

      and   ( )  ∑    
   

    

 Given any holomorphic self-map   of   , recall that [9] the 

composition operator is defined as follows        ( )  

        (    ). It is  called the composition operator with 

symbol   , is necessarily bounded. Moreover, let    
    the operator    defined by  

  ( ( ))   ( ) ( )        (           ) 

is called the Toeplitz operator on    with symbol   . Since 

      then    is called  a holomorphic Toeplitz operator. 

If     is a holomorphic Toeplitz operator, then the operator 

      is bounded and has the form  

       (   )            (    )  

 It is called the weighted composition operator with symbols 

  and   [7]. The weighted composition operator is denoted 

by      

         (   )            (     )  

For  given holomorphic self-maps   and   of  ,       is 

bounded operator even if      .To see a trivial example, 

consider  ( )      where      and     , then for all 

    , we have  

‖       ‖  ‖ ( )‖‖ ‖  ‖ ‖ |〈    〉|  

‖ ‖ ‖ ‖ ‖  ‖ . 

    In fact, if      , then       is bounded operator on    

with norm 

‖      ‖  ‖    ‖  ‖ ‖ ‖  ‖  ‖ ‖ √
  | ( )|

  | ( )|
 . 

We collect some properties of Toeplitz  and composition 

operators in the following known results.  

Lemma (1.1):   Let    be a holomorphic self-map of  ,  then 
(a)                   

(b)         . 

(c)               

(d)   
    ̅  

Proposition (1.2):[1]  Let   and  be two holomorphic self-

map of  , then 

1.   
        for all positive integer n, where     

       ⏟         
       

 

2.    is the identity operator if and only if  is the 

identity map. 

3.     C  if and only if     . 

4.    The composition operator cannot be zero operator. 

  For each    , the reproducing kernel at   ,defined by  

  ( )  
 

   ̅ 
  

It is easily seen that the family  *  +     forms a dense 

subset of    . In [4], the adjoint of  weighted composition 

operator on the reproducing kernel at   is as follows   

    
     ( )̅̅ ̅̅ ̅̅   ( )  

 If   ( )  (    )     )⁄  is linear-fractional self-map 

of  , Cowen in [5] establishes   
        

     where the 

Cowen auxiliary functions g,   and h are defined as follows:  

  ( )    (  ̅   ̅)  ( )  ( ̅   ̅) (  ̅  
 ̅)          ( )        . 
                 

  (    )
    

   
        

   
   

 Recall that an operator     ( ) is called normal if 

‖  ‖  ‖   ‖ for all    .  In [2] the author introduced 

the (   )-normal powers operators as follows: an operator 

   ( ) is called (   )-normal powers operator if  

  (  )  (  )    for some nonnegative integers   and 

 . Moreover,   is called (   )-unitary  powers operator if 

and only if    (  )  (  )       for some 

nonnegative integers   and  . In the following theorem the 

author  gives a necessary condition for   to be (   )-
normal powers operators. 

Proposition (1.3): Let    ( ). If T  is (   )-normal 

powers operator, then     is normal operator. 
In [4] Bourdon and Narayan characterized normal weighted 

composition operator on  
   In this paper, we give a 

characterization of (   )-normal powers weighted 

composition operator on    when   has interior fixed point 

of     
2. (   )-normal powers weighted composition operator 

on       
First, Cowen [6] described the normal composition operator 

as follows. 

Theorem (2.1): Let  be a holomorphic self-map of  . 

Then C is normal if and only if  (z)  z    for some   ||  

1. 

The following consequence describes the (   )-normal 

powers composition operator on   .  

Theorem (2.2): Let  be a holomorphic self-map of  . 

Then C is (   )-normal powers  if and only if  (z)  z    

for some   ||  1. 

Proof: If C is (   )-normal powers, then by 

proposition(1.3)    
        is normal operator. Thus by 

theorem(2.1) we have    ( )     for some   ||  1. 

Hence it is easily seen that (z)  z    for some   ||  1. 
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The converse is straightforward by the fact that every 

normal operator is (   )-normal powers    ■ 

Corollary(2.3): Let  be a holomorphic self-map of  . 

Then C is (   )-normal powers if and only if C is 

normal. 

Corollary(2.4): Let  be a holomorphic self-map of  . 

Then C is (   )-unitary powers  if and only if  (z)  z    

for some   ||  1 such that 
  ̅̅ ̅̅̅     for some nonnegative 

integers   and  . 

Proof: If  C is (   )-unitary powers, then it is (   )-
normal powers. Thus by corollary(2.3) and theorem(2.1) 

(z)  z    for some   ||  1. Moreover, for each     we 

have 

  
 (  

 )
 
  ( )     (   )

 
  ( )  (   )

 
     ( )  

  ( )  Hence for each     we  have  

    
 (  

 )
 
  ( )     (   )

 
  ( )

       ( )( )     ( )(  ( ))

   ( )  
It follows that for each       

 

    ( )̅̅ ̅̅ ̅̅ ̅̅ ̅̅   ( )
 

 

   ̅ 
  Then, 

 
 

  
  ̅̅ ̅̅̅  ̅ 

 
 

   ̅ 
  

 Thus 
  ̅̅ ̅̅̅      The converse is clear   ■ 

Proposition (2.5): Let  be a non-constant holomorphic 

self-map of   and       If        is (   )-normal 

powers operator, then either     or   never vanishes on 

   
Proof: Assume that        is (   )-normal powers 

operator such that  ( )    for some      Thus     
    

 ( )̅̅ ̅̅ ̅̅   ( )     But by proposition(1.3)     
   is normal. 

Hence 

 ‖    
    ‖  ‖(    

  )
 
  ‖  ‖( ( )̅̅ ̅̅ ̅̅ )

  
  ( )‖=0. 

Therefore for each            
        This implies that 

    
      Hence by [8] we have 

    
     (   )(    )   (       )        But by 

proposition(1.2) (4) we have   (   )(    )   (       )     It 

follows that  (  ( ))    for some           But  

is non-constant, then by open mapping theorem     on  .  

Proposition (2.6): Let  be a non-constant holomorphic 

self-map of         * +  If        is (   )-normal 

powers operator, then  is univalent   ■ 

Proof: If  is not univalent on    then there exists       

such that      ( )   ( )  Since      then by 

proposition(2.5) we get that   ( )     ( )     Put   
  

 ( )̅̅ ̅̅ ̅̅ ̅ 
  

 ( )̅̅ ̅̅ ̅̅   Since                  Therefore, it is easily 

seen that     
     ( )    ( )     But by 

proposition(1.3)     
   is normal, then ‖    

   ‖  

‖(    
  )

 
 ‖  0. This implies that     

       Therefore  

    
      (   )(    )   (       )         It implies that  

(   ( ))(    ( ))   (       ( )) (   ( ))     

Since      then by proposition(2.5)    (  ( ))    for 

each           It follows that  (   ( ))      But 

 is non-constant, then by open mapping theorem     on 

   which a contradiction. Therefore,  is univalent   ■ 

Now we are ready to discuss the sufficient condition for 

(   )-normal powers operator when  has an interior fixed 

point of    
Proposition (2.7): Let  be a holomorphic self-map of    
     such that  ( )     for some      If        is 

(   )-normal powers operator, then  

 (   )(    )   (       )  
( ( ))    

      
  

Proof: Since        is (   )-normal powers, then by 

proposition(1.3)     
   is normal. But (    

  )
 
   

(    
 )

  
   ( ( )̅̅ ̅̅ ̅̅ )

  
  . Hence    is an eigenvector 

for  (    
  )

 
 corresponding to eigenvalue ( ( )̅̅ ̅̅ ̅̅ )

  
  But 

    
   is normal, then    is an eigenvector for  

    
   corresponding to eigenvalue  ( )   (see [3]). 

Therefore      
      ( )    .Thus 

  (   )(    )   (       )       =  ( )      It follows that 

 (   )(    )   (       )(      )   ( )      

This implies that        

 (   )(    )   (       )  
( ( ))    

      
    ■ 

Now, since       then by Proposition(2.7) we get an 

immediate result. 

Corollary (2.8): Let  be a holomorphic self-map of    
     such that  ( )   . If        is (   )-normal 

powers operator, then  (   )(    )   (       ) is 

constant and     is (   )-normal powers. 

From corollary(2.8) and theorem(2.2) we conclude the 

following consequence. 

Corollary (2.9): Let  be a holomorphic self-map of   

with  ( )     and      such that | ( )|    on     
Then       is (   )-normal powers operator if and only if 

 (   )(    )   (       ) is constant and (z)  z    

for some   ||  1. 

Proposition(2.10): Let  be a linear fractional self-map of 

  and  (   )(    )   (      )     ( )( )           

Then        is (   )-normal powers operator if and only if 

  ̅̅ ̅̅   

(  ̅̅ ̅̅      ̅̅̅̅   )  (  ̅̅ ̅̅      ̅̅ ̅̅   ) 
         

  ̅̅ ̅̅   

(  ̅̅ ̅̅      ̅̅ ̅̅   )  (  ̅̅ ̅̅      ̅̅ ̅̅   ) 
        

where     is the Cowen auxiliary function of     
Proof: Recall that if    is a linear fractional self-map of    
then    

        
     where the Cowen auxiliary functions 

g,   and h are defined as follows:  

  ( )    (  ̅   ̅)  ( )  ( ̅   ̅) (  ̅  
 ̅)          ( )        . 
Since    is a linear fractional self-map of  , then it is clear 

that     is also a linear fractional self-map of    Therefore, 

   
           

     where the Cowen auxiliary functions   , 

   and    are defined as follows:  

  ( )  
 

   ̅    ̅
    

  ( )  
  ̅    ̅

   ̅    ̅
    

and                                                  ( )            

             ( )( )  
  

      
    then    ( )( )           

     Thus for each      

we get 
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(    
 )

 
    

  

 (  (   )(    )   (      )
   )

 

  (   )(    )   (      )     

=     
   (   )(    )   (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (   )(    )   (      )      

   
          

   (   )(    )   (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (   )(    )   (      )     

               ( )
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     ( )

       

     ̅̅ ̅̅           ( )
      

     ̅̅ ̅̅        ( )   
          

=    ̅̅ ̅̅    (   ( )
   )

          

 =      ̅̅ ̅̅ ̅       ( )                

Similarly,   

    
 (    

 )
 
 

   (   )(    )   (      )   (  (   )(    )   (      )   )
 
  

  (   )(    )   (      )      
   (   )(    )   (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   

  
   (   )(    )   (      )            

   (   )(    )   (      )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   

      ( )
                ( )

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    

       ̅̅ ̅̅      ( )
                

     ̅̅ ̅̅     ( )(     )
          

=      ̅̅ ̅̅ ̅    ( )                    

as desired. 
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