ON (n,m)-NORMAL POWERS WEIGHTED COMPOSITION OPERATORS ON HARDY SPACE \mathbb{H}^{2}.

Eiman H. Abood

Department of Mathematics, College of science, University of Baghdad, Baghdad, Iraq.

Abstract

An operator $T \in B(H)$ is called (n, m)-normal powers operator if $\quad T^{n}\left(T^{m}\right)^{*}=\left(T^{m}\right)^{*} T^{n}$ for some nonnegative integers n and m. In this paper we characterized (n, m)-normal powers weighted composition on Hardy space \mathbb{H}^{2}.

Keywords: Composition operators, weighted composition operators, (n, m)-normal powers operators

.1. INTRODUCTION.

Let \mathbb{U} denote the open unite disc in the complex plan, \mathbb{H}^{∞} denotes the collection of all bounded holomorphic functions on \mathbb{U} and let \mathbb{H}^{2} is consisting of all holomorphic functions on \mathbb{U} such that $\quad f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad$ whose Maclaurin coefficients are square summable (i.e) $f(z)=$ $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. More precisely $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \mathbb{H}^{2}$ if and only if $\|f\|=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. The inner product inducing the $\mathbb{H}^{2} \quad$ norm is given by $\quad\langle f, g\rangle=$ $\sum_{n=0}^{\infty} a_{n} \overline{b_{n}}$
where $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$.
Given any holomorphic self-map φ of \mathbb{U}, recall that [9] the composition operator is defined as follows $C_{\varphi}(h)=$ hou $\left(h \in \mathbb{H}^{2}\right)$. It is called the composition operator with symbol φ, is necessarily bounded. Moreover, let $f \in$ \mathbb{H}^{∞}, the operator $\quad T_{f}$ defined by $T_{f}(h(z))=f(z) h(z), \quad\left(z \in \mathbb{U}, h \in \mathbb{H}^{2}\right)$
is called the Toeplitz operator on \mathbb{H}^{2} with symbol f. Since $f \in \mathbb{H}^{\infty}$, then T_{f} is called a holomorphic Toeplitz operator. If T_{f} is a holomorphic Toeplitz operator, then the operator $T_{f} C_{\varphi}$ is bounded and has the form
$T_{f} C_{\varphi} g=f(g \circ \varphi) \quad\left(g \in \mathbb{H}^{2}\right)$.
It is called the weighted composition operator with symbols f and φ [7]. The weighted composition operator is denoted by

$$
\mathcal{W}_{f, \varphi} g=f(g \circ \varphi) \quad\left(g \in \mathbb{H}^{2}\right)
$$

For given holomorphic self-maps f and φ of $\mathbb{U}, \mathcal{W}_{f, \varphi}$ is bounded operator even if $f \notin \mathbb{H}^{\infty}$.To see a trivial example, consider $\varphi(z)=p \quad$ where $p \in \mathbb{U}$ and $f \in \mathbb{H}^{2}$, then for all $g \in \mathbb{H}^{2}$, we have
$\left\|\mathcal{W}_{f, \varphi} g\right\|=\|g(p)\|\|f\|=\|f\| \quad\left|\left\langle g, K_{p}\right\rangle\right| \leq$ $\|f\|\|g\|\left\|K_{p}\right\|$.

In fact, if $f \in \mathbb{H}^{\infty}$, then $\mathcal{W}_{f, \varphi}$ is bounded operator on \mathbb{H}^{2} with norm
$\left\|\mathcal{W}_{f, \varphi}\right\|=\left\|T_{f} C_{\varphi}\right\| \leq\|f\|_{\infty}\left\|C_{\varphi}\right\|=\|f\|_{\infty} \sqrt{\frac{1+|\varphi(0)|}{1-|\varphi(0)|}}$.
We collect some properties of Toeplitz and composition operators in the following known results.
Lemma (1.1): Let φ be a holomorphic self-map of \mathbb{U}, then
(a) $\quad C_{\varphi} T_{f}=T_{f o \varphi} C_{\varphi}$.
(b) $\quad T_{g} T_{f}=T_{g f}$.
(c) $T_{f+\gamma g}=T_{f}+\gamma T_{g}$.
(d) $T_{f}^{*}=T_{\bar{f}}$.

Proposition (1.2):[1] Let φ and ψ be two holomorphic selfmap of \mathbb{U}, then

1. $C_{\varphi}^{n}=C_{\varphi_{n}}$ for all positive integer n , where $\varphi_{n}=$ $\underbrace{\varphi \circ \varphi \circ \cdots \circ \varphi}_{n \text {-times }}$.
2. $\quad C_{\varphi}$ is the identity operator if and only if φ is the identity map.
3. $C_{\varphi}=\mathrm{C}_{\psi}$ if and only if $\varphi=\psi$.
4. The composition operator cannot be zero operator.

For each $\alpha \in \mathbb{U}$, the reproducing kernel at α, defined by $K_{\alpha}(z)=\frac{1}{1-\bar{\alpha} z}$.
It is easily seen that the family $\left\{K_{\alpha}\right\}_{\alpha \in \mathbb{U}}$ forms a dense subset of \mathbb{H}^{2}. In [4], the adjoint of weighted composition operator on the reproducing kernel at α is as follows
$\mathcal{W}_{f, \varphi}^{*} K_{\alpha}=\overline{f(\alpha)} K_{\varphi(\alpha)}$.
If $\varphi(z)=(a z+b) / c z+d)$ is linear-fractional self-map of \mathbb{U}, Cowen in [5] establishes $C_{\varphi}^{*}=T_{g} C_{\sigma} T_{h}^{*}$, where the Cowen auxiliary functions g, σ and h are defined as follows:
$g(z)=1 /(-\bar{b} z+\bar{d}), \sigma(z)=(\bar{a} z-\bar{c}) /(-\bar{b} z+$
$\bar{d})$ and $h(z)=c z+d$.
Therefore $W_{f, \varphi}^{*}=\left(T_{f} C_{\varphi}\right)^{*}=C_{\varphi}^{*} T_{f}^{*}=T_{g} C_{\sigma} T_{h}^{*} T_{f}^{*}$.
Recall that an operator $T \in B(H)$ is called normal if $\|T x\|=\left\|T^{*} x\right\|$ for all $x \in H$. In [2] the author introduced the (n, m)-normal powers operators as follows: an operator $T \in B(H)$ is called (n, m)-normal powers operator if $T^{n}\left(T^{m}\right)^{*}=\left(T^{m}\right)^{*} T^{n}$ for some nonnegative integers n and m . Moreover, T is called (n, m)-unitary powers operator if and only if $\quad T^{n}\left(T^{m}\right)^{*}=\left(T^{m}\right)^{*} T^{n}=I \quad$ for some nonnegative integers n and m . In the following theorem the author gives a necessary condition for T to be (n, m)normal powers operators.
Proposition (1.3): Let $T \in B(H)$. If T is (n, m)-normal powers operator, then $T^{n m}$ is normal operator.
In [4] Bourdon and Narayan characterized normal weighted composition operator on \mathbb{H}^{2}. In this paper, we give a characterization of (n, m)-normal powers weighted composition operator on \mathbb{H}^{2} when φ has interior fixed point of \mathbb{U}.
2. (n, m)-normal powers weighted composition operator on \mathbb{H}^{2}.
First, Cowen [6] described the normal composition operator as follows.
Theorem (2.1): Let φ be a holomorphic self-map of \mathbb{U}. Then C_{φ} is normal if and only if $\varphi(z)=\lambda z$ for some $|\lambda| \leq$ 1.

The following consequence describes the (n, m)-normal powers composition operator on \mathbb{H}^{2}.
Theorem (2.2): Let φ be a holomorphic self-map of \mathbb{U}. Then C_{φ} is (n, m)-normal powers if and only if $\varphi(\mathrm{z})=\lambda \mathrm{z}$ for some $|\lambda| \leq 1$.
Proof: If C_{φ} is (n, m)-normal powers, then by proposition(1.3) $C_{\varphi}^{n m}=C_{\varphi_{n m}}$ is normal operator. Thus by theorem(2.1) we have $\varphi_{n m}(z)=\lambda z$ for some $\quad|\lambda| \leq 1$. Hence it is easily seen that $\varphi(z)=\lambda z$ for some $\quad|\lambda| \leq 1$.

The converse is straightforward by the fact that every normal operator is (n, m)-normal powers
Corollary(2.3): Let φ be a holomorphic self-map of \mathbb{U}. Then C_{φ} is (n, m)-normal powers if and only if C_{φ} is normal.
Corollary(2.4): Let φ be a holomorphic self-map of \mathbb{U}. Then C_{φ} is (n, m)-unitary powers if and only if $\varphi(\mathrm{z})=\lambda \mathrm{z}$ for some $|\lambda| \leq 1$ such that $\overline{\lambda^{m}} \lambda^{n}=1$ for some nonnegative integers n and m.
Proof: If C_{φ} is (n, m)-unitary powers, then it is (n, m) normal powers. Thus by corollary(2.3) and theorem(2.1) $\varphi(\mathrm{z})=\lambda \mathrm{z}$ for some $|\lambda| \leq 1$. Moreover, for each $\alpha \in \mathbb{U}$ we have
$C_{\varphi}^{n}\left(C_{\varphi}^{m}\right)^{*} K_{\alpha}(z)=C_{\varphi_{n}}\left(C_{\varphi_{m}}\right)^{*} K_{\alpha}(z)=\left(C_{\varphi_{m}}\right)^{*} C_{\varphi_{n}} K_{\alpha}(z)=$ $K_{\alpha}(z)$. Hence for each $\alpha \in \mathbb{U}$ we have

$$
\begin{aligned}
C_{\varphi}^{n}\left(C_{\varphi}^{m}\right)^{*} K_{\alpha}(z) & =C_{\varphi_{n}}\left(C_{\varphi_{m}}\right)^{*} K_{\alpha}(z) \\
& =C_{\varphi_{n}} K_{\varphi_{m}(\alpha)}(z)=K_{\varphi_{m}(\alpha)}\left(\varphi_{n}(z)\right) \\
& =K_{\alpha}(z) .
\end{aligned}
$$

It follows that for each $\alpha \in \mathbb{U}$,
$\frac{1}{1-\overline{\varphi_{m}(\alpha)} \varphi_{n}(z)}=\frac{1}{1-\bar{\alpha} z}$. Then,
$\frac{1}{1-\bar{\lambda}^{m} \lambda^{n} \bar{\alpha} Z}=\frac{1}{1-\bar{\alpha} Z}$.
Thus $\lambda^{m} \lambda^{n}=1$. The converse is clear
Proposition (2.5): Let φ be a non-constant holomorphic self-map of \mathbb{U} and $f \in \mathbb{H}^{\infty}$. If $\mathcal{W}_{f, \varphi}$ is (n, m)-normal powers operator, then either $f=0$ or f never vanishes on \mathbb{U}.
Proof: Assume that $\mathcal{W}_{f, \varphi}$ is (n, m)-normal powers operator such that $f(\beta)=0$ for some $\beta \in \mathbb{U}$. Thus $\mathcal{W}_{f, \varphi}^{*} K_{\beta}=$ $\overline{f(\beta)} K_{\varphi(\beta)}=0$. But by proposition(1.3) $\mathcal{W}_{f, \varphi}^{n m}$ is normal. Hence

$$
\left\|\mathcal{W}_{f, \varphi}^{n m} K_{\beta}\right\|=\left\|\left(\mathcal{W}_{f, \varphi}^{n m}\right)^{*} K_{\beta}\right\|=\left\|(\overline{f(\beta)})^{n m} K_{\varphi(\beta)}\right\|=0 .
$$

Therefore for each $\beta \in \mathbb{U} \quad \mathcal{W}_{f, \varphi}^{n m} K_{\beta}=0$. This implies that $\mathcal{W}_{f, \varphi}^{n m}=0$. Hence by [8] we have
$\mathcal{W}_{f, \varphi}^{n m}=T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)} C_{\varphi_{n m}}=0 . \quad$ But by proposition(1.2) (4) we have $T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)}=0$. It follows that $f\left(\varphi_{i}(\mathbb{U})\right)=0$ for some $1 \leq i \leq n m-1$. But φ is non-constant, then by open mapping theorem $f=0$ on \mathbb{U}.
Proposition (2.6): Let φ be a non-constant holomorphic self-map of $\mathbb{U}, f \in \mathbb{H}^{\infty} /\{0\}$. If $\mathcal{W}_{f, \varphi}$ is (n, m)-normal powers operator, then φ is univalent
Proof: If φ is not univalent on \mathbb{U}, then there exists $a, b \in \mathbb{U}$ such that $a \neq b, \varphi(a)=\varphi(b)$. Since $f \neq 0$, then by proposition(2.5) we get that $f(a) \neq 0, f(b) \neq 0$. Put $g=$ $\frac{K_{a}}{\overline{f(a)}}-\frac{K_{b}}{\overline{f(b)}}$. Since $a \neq b$, then $g \neq 0$. Therefore, it is easily seen that $\mathcal{W}_{f, \varphi}^{*} g=K_{\varphi(a)}-K_{\varphi(b)}=0$. But by proposition(1.3) $\mathcal{W}_{f, \varphi}^{n m}$ is normal, then $\left\|\mathcal{W}_{f, \varphi}^{n m} g\right\|=$ $\left\|\left(\mathcal{W}_{f, \varphi}^{n m}\right)^{*} g\right\|=0$. This implies that $\mathcal{W}_{f, \varphi}^{n m} g=0$. Therefore $\mathcal{W}_{f, \varphi}^{n m} g=T_{f(f \circ \varphi)\left(f o \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)} C_{\varphi_{n m}} g=0$. It implies that $(f \circ \varphi(z))\left(f \circ \varphi_{2}(z)\right) \ldots\left(f \circ \varphi_{n m-1}(z)\right) g\left(\varphi_{n m}(z)\right)=0$. Since $f \neq 0$, then by proposition $(2.5) \quad f\left(\varphi_{i}(\mathbb{U})\right) \neq 0$ for each $1 \leq i \leq n m-1$. It follows that $g\left(\varphi_{n m}(\mathbb{U})\right)=0$. But φ is non-constant, then by open mapping theorem $g=0$ on \mathbb{U}, which a contradiction. Therefore, φ is univalent

Now we are ready to discuss the sufficient condition for (n, m)-normal powers operator when φ has an interior fixed point of \mathbb{U}.
Proposition (2.7): Let φ be a holomorphic self-map of \mathbb{U}, $f \in \mathbb{H}^{\infty}$ such that $\varphi(p)=p$ for some $p \in \mathbb{U}$. If $\mathcal{W}_{f, \varphi}$ is (n, m)-normal powers operator, then
$f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)=\frac{(f(p))^{n m} K_{p}}{K_{p} \circ \varphi_{n m}}$.
Proof: Since $\mathcal{W}_{f, \varphi}$ is (n, m)-normal powers, then by proposition(1.3) $\mathcal{W}_{f, \varphi}^{n m}$ is normal. But $\left(\mathcal{W}_{f, \varphi}^{n m}\right)^{*} K_{p}=$ $\left(\mathcal{W}_{f, \varphi}^{*}\right)^{n m} K_{p}=(\overline{f(p)})^{n m} K_{p}$. Hence K_{p} is an eigenvector for $\left(\mathcal{W}_{f, \varphi}^{n m}\right)^{*}$ corresponding to eigenvalue $(\overline{f(p)})^{n m}$. But $\mathcal{W}_{f, \varphi}^{n m}$ is normal, then K_{p} is an eigenvector for $\mathcal{W}_{f, \varphi}^{n m}$ corresponding to eigenvalue $f(p)^{n m}$ (see [3]). Therefore $\mathcal{W}_{f, \varphi}^{n m} K_{p}=f(p)^{n m} K_{p}$. Thus
$T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)} C_{\varphi_{n m}} K_{p}=f(p)^{n m} K_{p}$. It follows that $f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)\left(K_{p} \circ \varphi_{n m}\right)=f(p)^{n m} K_{p}$. This implies that
$f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)=\frac{(f(p))^{n m_{K_{p}}}}{K_{p} \circ \varphi_{n m}}$
Now, since $K_{0} \equiv 1$, then by Proposition(2.7) we get an immediate result.
Corollary (2.8): Let φ be a holomorphic self-map of \mathbb{U}, $f \in \mathbb{H}^{\infty}$ such that $\varphi(0)=0$. If $\mathcal{W}_{f, \varphi}$ is (n, m)-normal powers operator, then $f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)$ is constant and $C_{\varphi_{n m}}$ is (n, m)-normal powers.
From corollary(2.8) and theorem(2.2) we conclude the following consequence.
Corollary (2.9): Let φ be a holomorphic self-map of \mathbb{U} with $\varphi(0)=0$ and $f \in \mathbb{H}^{\infty}$ such that $|f(z)|=1$ on \mathbb{U}. Then $\mathcal{W}_{f, \varphi}$ is (n, m)-normal powers operator if and only if $f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n m-1}\right)$ is constant and $\varphi(\mathrm{z})=\lambda \mathrm{z}$ for some $|\lambda| \leq 1$.
Proposition(2.10): Let φ be a linear fractional self-map of \mathbb{U} and $f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f o \varphi_{i-1}\right)=K_{\sigma_{i(0)}}(z), \quad i=n, m$. Then $\mathcal{W}_{f, \varphi}$ is (n, m)-normal powers operator if and only if
$\overline{\left(\overline{d_{m}} d_{n}-\overline{c_{m}} c_{n}\right)-\left(\overline{b_{m}} d_{n}-\overline{a_{m}} c_{n}\right) z} C_{\varphi_{n} \circ \sigma_{m}}=$
$\left.\overline{\left(\overline{d_{m}} d_{n}\right.} d_{n}-\overline{b_{m}} b_{n}\right)-\left(\overline{b_{m}} a_{n}-\overline{d_{m}} c_{n}\right) z$$C_{\sigma_{m} \circ \varphi_{n}}$
where σ_{i} is the Cowen auxiliary function of φ_{i}.
Proof: Recall that if φ is a linear fractional self-map of \mathbb{U}, then $C_{\varphi}^{*}=T_{g} C_{\sigma} T_{h}^{*}$, where the Cowen auxiliary functions g, σ and h are defined as follows:
$g(z)=1 /(-\bar{b} z+\bar{d}), \sigma(z)=(\bar{a} z-\bar{c}) /(-\bar{b} z+$
\bar{d}) and $h(z)=c z+d$.
Since φ is a linear fractional self-map of \mathbb{U}, then it is clear that $C_{\varphi_{i}}$ is also a linear fractional self-map of \mathbb{U}. Therefore, $C_{\varphi_{i}}^{*}=T_{g_{i}} C_{\sigma_{i}} T_{h_{i}}^{*}, \quad$ where the Cowen auxiliary functions g_{i}, σ_{i} and h_{i} are defined as follows:
$g_{i}(z)=\frac{1}{-\bar{b}_{l} z+\bar{d}_{l}}$,
$\sigma_{i}(z)=\frac{\bar{a}_{l} z-\bar{c}_{l}}{-\bar{b}_{l} z+\bar{d}_{l}}$,
and
Note that, $K_{\sigma_{i(0)}}(z)=\frac{d_{i}}{c_{i} \mathrm{z}+d_{i}}$,

$$
h_{i}(z)=c_{i} z+d_{i} .
$$

n, m. Thus for each $v \in \mathbb{H}^{2}$
we get
then $K_{\sigma_{i(0)}}(z) h_{i}=d_{i}, i=$
$\left(W_{f, \varphi}^{m}\right)^{*} W_{f, \varphi}^{n} v$
$=\left(T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{m-1}\right)} C_{\varphi_{m}}\right)^{*} T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n-1}\right)} C_{\varphi_{n}} v$
$=C_{\varphi_{m}}^{*} T_{\overline{f(f \circ \varphi)\left(f o \varphi_{2}\right) \ldots\left(f \circ \varphi_{m-1}\right)}} T_{f(f \circ \varphi)\left(f o \varphi_{2}\right) \ldots\left(f \circ \varphi_{n-1}\right)} C_{\varphi_{n}} v$
$=T_{g_{m}} C_{\sigma_{m}} T_{h_{m}}^{*} T_{\overline{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{m-1}\right)}} T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n-1}\right)} C_{\varphi_{n}} v$
$=T_{g_{m}} C_{\sigma_{m}} T_{\overline{h_{m} K_{\sigma_{m(0)}}}} T_{K_{\sigma_{n(0)}}} C_{\varphi_{n}} v$
$=\overline{d_{m}} T_{g_{m}} C_{\sigma_{m}} T_{K_{\sigma_{n(0)}}} C_{\varphi_{n}} v$
$=\overline{d_{m}} T_{g_{m}} T_{K_{\sigma_{n(0)}}{ }^{\circ} \sigma_{m}} C_{\sigma_{m}} C_{\varphi_{n}} v$
$=\overline{d_{m}} T_{g_{m}\left(K_{\sigma_{n(0)}} \circ{ }^{\circ}{ }_{m}\right)} C_{\varphi_{n} \circ \sigma_{m}} v$
$=\overline{d_{m}} \cdot g_{m} \cdot K_{\sigma_{n(0)}} \circ \sigma_{m} \cdot v \circ \varphi_{n} \circ \sigma_{m}$.
Similarly,
$W_{f, \varphi}^{n}\left(W_{f, \varphi}^{m}\right)^{*} v$
$=T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n-1}\right)} C_{\varphi_{n}}\left(T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{m-1}\right)} C_{\varphi_{m}}\right)^{*} v$
$T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n-1}\right)} C_{\varphi_{n}} C_{\varphi_{m}}^{*} T_{\overline{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{m-1}\right)}} v$
$=T_{f(f \circ \varphi)\left(f \circ \varphi_{2}\right) \ldots\left(f \circ \varphi_{n-1}\right)} C_{\varphi_{n}} T_{g_{m}} C_{\sigma_{m}} T_{h_{m}}^{*} T_{\overline{f(f \circ \varphi)\left(f o \varphi_{2}\right) \ldots\left(f o \varphi_{m-1}\right)}}$
$=T_{K_{\sigma_{n(0)}}} C_{\varphi_{n}} T_{g_{m}} C_{\sigma_{m}} T_{\overline{h_{m} K_{\sigma_{m(0)}}}} v$
$=\overline{d_{m}} T_{K_{\sigma_{n(0)}}} T_{g_{m} \circ \varphi_{n}} C_{\varphi_{n}} C_{\sigma_{m}} v$
$=\overline{d_{m}} T_{K_{\sigma_{n(0)}\left(g_{m} \circ \varphi_{n}\right)}} C_{\sigma_{m} \circ \varphi_{n}} v$
$=\overline{d_{m}} \cdot K_{\sigma_{n(0)}} \cdot g_{m} \circ \varphi_{n} \cdot v \circ \sigma_{m} \circ \varphi_{n}$.
as desired.

REFERENCES:

[1] Abood E. H., The composition operator on Hardy space H^{2}, Ph.D. Thesis, University of Baghdad, 2003.
[2] Abood E. H. and Al-loz, M. A., On some generalizations of normal operators on Hilbert space, Iraqi J. of Science, 56(2015), No. 2C, 17861794.
[3] Berberian, S. K., Introduction to Hilbert space, Sec. Ed., Chelesa Publishing Com., New York, N. Y., 1976.
[4] Bourdon Paul S. and Narayan S., Normal weighted composition operators on the Hardy space, J. Math. Anal. Appl.,367(2010),5771-5801.
[5] Cowen, C. C., Linear fractional composition operator on H^{2}, Integral Equations and Operator Theory, 11(1988), 151-160.
[6] Cowen, C. C., Subnormality and composition operator on H^{2}, J. of Func. Ana., 18(1988), 298313.
[7] Gunatillake, G., Weighted composition operators, Ph.D. Thesis, University of Baghdad, 2005.
[8] Gunatillake, G., Invertible weighted composition operator, J. of Func. Ana., 261(2011), 831-860.
[9] Nordgren, E. A., Composition operator, Can. J. Math., 20(1968), 442-449.

